Question Detail
What is the square root of 0.16
- 0.4
- 0.04
- 0.004
- 4
Answer: Option A
Explanation:
as .4 * .4 = 0.16
1. Evaluate
\begin{aligned}
\sqrt{1\frac{9}{16}}
\end{aligned}
- \begin{aligned} 1\frac{1}{6} \end{aligned}
- \begin{aligned} 1\frac{1}{5} \end{aligned}
- \begin{aligned} 1\frac{1}{4} \end{aligned}
- \begin{aligned} 1\frac{1}{3} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
= \sqrt{\frac{25}{16}}
\end{aligned}
\begin{aligned}
= \frac{\sqrt{25}}{\sqrt{16}}
\end{aligned}
\begin{aligned}
= \frac{5}{4}
\end{aligned}
\begin{aligned}
= 1\frac{1}{4}
\end{aligned}
2. Evaluate
\begin{aligned}
\sqrt{6084}
\end{aligned}
- 75
- 77
- 78
- 68
Answer: Option C
3. if a = 0.1039, then the value of
\begin{aligned} \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}
- 12.039
- 1.2039
- 11.039
- 1.1039
Answer: Option D
Explanation:
Tip: Please check the question carefully before answering. As 3a is not under the root we can convert it into a formula , lets evaluate now :
\begin{aligned}
= \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1)^2 + (2a)^2 - 2x1x2a} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1-2a)^2} + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= 1 + a = 1 + 0.1039 = 1.1039 \end{aligned}
4. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}
5. Evaluate \begin{aligned}
\sqrt{1471369}
\end{aligned}
- 1213
- 1223
- 1233
- 1243
Answer: Option A