Question Detail
What is the square root of 0.16
- 0.4
- 0.04
- 0.004
- 4
Answer: Option A
Explanation:
as .4 * .4 = 0.16
1. The cube root of .000216 is
- 0.6
- 0.006
- 0.06
- .0006
Answer: Option C
2. Evaluate
\begin{aligned} \sqrt[3]{4\frac{12}{125}} \end{aligned}
- \begin{aligned} 1\frac{2}{5} \end{aligned}
- \begin{aligned} 1\frac{3}{5} \end{aligned}
- \begin{aligned} 1\frac{4}{5} \end{aligned}
- 1
Answer: Option B
Explanation:
\begin{aligned}
= \sqrt[3]{\frac{512}{125}} \end{aligned}
\begin{aligned}
= (\frac{8*8*8}{5*5*5})^{\frac{1}{3}} \end{aligned}
\begin{aligned} = \frac{8}{5} = 1\frac{3}{5} \end{aligned}
3. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}
- 0.00243
- 0.0243
- 0.243
- 2.43
Answer: Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.
4. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}
5. The least perfect square, which is divisible by each of 21, 36 and 66 is
- 213414
- 213424
- 213434
- 213444
Answer: Option D
Explanation:
L.C.M. of 21, 36, 66 = 2772
Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11
To make it a perfect square, it must be multiplied by 7 x 11.
So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444