Question Detail
The Top of a 15 metre high tower makes an angle of elevation of 60 degree with the bottom of an electric pole and angle of elevation of 30 degree with the top of pole. Find the height of the electric pole.
- 7 metre
- 8 metre
- 9 metre
- 10 metre
Answer: Option D
Explanation:
Let AB be the tower and CD be the electric pole.
\begin{aligned}
\angle{ACB}=60^{\circ}, \angle{EDB}=30^{\circ}, \\
AB = 15&m \\
Let & CD = h, \text{ then}, \\
BE = AB-AE = AB - AE = 15-h\\
\frac{AB}{AC} = tan 60^{\circ} = \sqrt{3} \\
=> AC = \frac{AB}{\sqrt{3}} \\
=> AC = \frac{15}{\sqrt{3}} \\
and, & \frac{BE}{DE} = tan 30^{\circ} = \frac{1}{\sqrt{3}} \\
=> DE = (BE*\sqrt{3}) \\
= \sqrt{3}(15-h) \\
Now, & AC = DE \\
=> \frac{15}{\sqrt{3}} = \sqrt{3}(15-h) \\
=> 3h = 45-15 \\
=> h = \frac{30}{3} = 10 m
\end{aligned}