Surds and Indices Questions Answers
-
8. \begin{align}
\left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{b}{a}\right)^{x-7}.\\\text{ What is the value of x ?}
\end{align}- 1.5
- 4.5
- 7.5
- 9.5
Answer And Explanation
Answer: Option B
Explanation:
\begin{align}&\left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{b}{a}\right)^{x-7}\\\\
&\Rightarrow \left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{a}{b}\right)^{-(x-7)}\\\\
&\Rightarrow x - 2 = -(x - 7)\\\\
&\Rightarrow x - 2 = -x + 7\\\\
&\Rightarrow x-2 = -x + 7\\\\
&\Rightarrow 2x = 9\\\\
&\Rightarrow x = \dfrac{9}{2} = 4.5
\end{align} -
9. \begin{aligned}
\text{If }x = \left(8 + 3\sqrt{7}\right),\text{ what is the value of }\\\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)?
\end{aligned}
- \begin{aligned} \sqrt{13} \end{aligned}
- \begin{aligned} \sqrt{14} \end{aligned}
- \begin{aligned} \sqrt{15} \end{aligned}
- \begin{aligned} \sqrt{16} \end{aligned}
Answer And Explanation
Answer: Option B
Explanation:
\begin{align}&\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)^2\\\\
&= x - 2 + \dfrac{1}{x}\\\\
&= x + \dfrac{1}{x} - 2 \\\\
&= \left(8 + 3\sqrt{7}\right) + \dfrac{1}{\left(8 + 3\sqrt{7}\right)} - 2 \\\\
&= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{\left(8 + 3\sqrt{7}\right)\left(8 - 3\sqrt{7}\right)} - 2 \\\\
&= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{8^2 - \left(3\sqrt{7}\right)^2} - 2 \\\\
&= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{64 - 63} - 2 \\\\
&= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{1} - 2 \\\\
&= 8 + 3\sqrt{7} + 8 - 3\sqrt{7} - 2 \\\\
&= 14 \\\\
&\text{as }\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)^2 = 14\\\\
&\text{so ,}\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right) = \sqrt{14}\end{align} -
10. \begin{aligned} \text{If } 5^{(a + b)} = 5 \times 25 \times 125 ,\\ \text{what is }(a + b)^2
\end{aligned}- 25
- 28
- 36
- 44
Answer And Explanation
Answer: Option C
-
11. \begin{aligned}
\text{If }2x = \sqrt[3]{32}, \text{ then x is equal to}
\end{aligned}
- \begin{aligned} \frac{5}{2} \end{aligned}
- \begin{aligned} \frac{2}{5} \end{aligned}
- \begin{aligned} \frac{3}{5} \end{aligned}
- \begin{aligned} \frac{5}{3} \end{aligned}
Answer And Explanation
Answer: Option D
Explanation:
\begin{aligned}
= (32)^{\frac{1}{3}}\\
= (2^5)^{\frac{1}{3}}\\
= 2^{\frac{5}{3}}\\
=> x= \frac{5}{3}
\end{aligned} -
12. \begin{aligned}
x = 3 + 2\sqrt{2}, \text{ then the value of }\\
(\sqrt{x} - \frac{1}{\sqrt{x}})
\end{aligned}- 1
- 2
- 3
- 4
Answer And Explanation
Answer: Option B
Explanation:
Clue:
\begin{aligned}
(\sqrt{x} - \frac{1}{\sqrt{x}})^2 = x + \frac{1}{x} - 2 \
\end{aligned}
Now put the value of x to calculate the answer :) -
13. \begin{aligned}
\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?
\end{aligned}- 1
- 2
- 3
- 4
Answer And Explanation
Answer: Option A
Explanation:
\begin{aligned}
= \frac{1}{\left( 1 + \frac{a^n}{a^m} \right)} +
\frac{1}{\left( 1 + \frac{a^m}{a^n} \right)} \\
= \frac{a^m}{(a^m+a^n)} + \frac{a^n}{(a^m+a^n)} \\
= \frac{(a^m+a^n)}{(a^m+a^n)} = 1
\end{aligned} -
14. \begin{aligned}
\text{If } 3^{x-y} = 27 \text{ and } 3^{x+y} = 243, \\
\text{ then find the value of x }
\end{aligned}- 1
- 2
- 3
- 4
Answer And Explanation
Answer: Option D
Explanation:
\begin{aligned}3^{x-y} = 27 = 3^3 <=> x-y = 3 \text{... (i)}\\
3^{x+y} = 243 = 3^5 <=> x+y = 5 \text{... (ii)} \\
\text{ adding (i) and (ii)}
=> 2x = 8 \\
=> x = 4
\end{aligned}