Question Detail

If m and n are whole numbers such that
\begin{aligned} m^n=121 \end{aligned}
, the value of \begin{aligned} (m-1)^{n + 1} \end{aligned} is

  • 1
  • 10
  • 100
  • 1000
Similar Questions :

1. \begin{aligned} (1000)^7 \div (10)^{18} = ? \end{aligned}

  • 10
  • 100
  • 1000
  • 10000

2. Find the value of,
\begin{aligned}
\frac{1}{216^{-\frac{2}{3}}}+\frac{1}{256^{-\frac{3}{4}}}+\frac{1}{32^{-\frac{1}{5}}}
\end{aligned}

  • 100
  • 101
  • 102
  • 103

3. \begin{aligned} \text{If } 5^{(a + b)} = 5 \times 25 \times 125 ,\\ \text{what is }(a + b)^2

\end{aligned}

  • 25
  • 28
  • 36
  • 44

4. \begin{aligned}
\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?
\end{aligned}

  • 1
  • 2
  • 3
  • 4

5. \begin{aligned}
\text{if }6^m = 46656, \\\text{ What is the value of }6^{m-2}
\end{aligned}

  • 7776
  • 7782
  • 1296
  • 1290
Read more from - Surds and Indices Questions Answers