Answer: Option D
Explanation:
In a group of 6 boys and 4 girls, four children are to be selected such that
at least one boy should be there.
So we can have
(four boys) or (three boys and one girl) or (two boys and two girls) or (one boy and three gils)
This combination question can be solved as
\begin{aligned}
(^{6}{C}_{4}) + (^{6}{C}_{3} * ^{4}{C}_{1}) + \\
+ (^{6}{C}_{2} * ^{4}{C}_{2}) + (^{6}{C}_{1} * ^{4}{C}_{3}) \\
= \left[\dfrac{6 \times 5 }{2 \times 1}\right] + \left[\left(\dfrac{6 \times 5 \times 4 }{3 \times 2 \times 1}\right) \times 4\right] + \\\left[\left(\dfrac{6 \times 5 }{2 \times 1}\right)\left(\dfrac{4 \times 3 }{2 \times 1}\right)\right] + \left[6 \times 4 \right] \\
= 15 + 80 + 90 + 24\\
= 209
\end{aligned}