Question Detail
Find the value of X
X = (6/119) * (63/8) * (17/9)
- 1/4
- 2/4
- 3/4
- 4
Answer: Option C
1. 18800 / 470 / 20
- 1
- 2
- 3
- 4
Answer: Option B
Explanation:
18800 / 470 / 20 = (18800 / 470) / 20 = 40 / 20 = 2
2. \begin{aligned} 3034 -(1002 \div 20.04) = ? \end{aligned}
- 1964
- 1984
- 2964
- 2984
Answer: Option D
Explanation:
\begin{aligned}
= 3034 -( \frac{1002}{2004} \times 100)
\end{aligned}
\begin{aligned}
= 3034 - 50 = 2984
\end{aligned}
3. Value of
\begin{aligned}
\frac{1}{2+\frac{1}{2+\frac{1}{2-\frac{1}{2}}}}
\end{aligned}
- \begin{aligned} \frac{6}{19} \end{aligned}
- \begin{aligned} \frac{7}{19} \end{aligned}
- \begin{aligned} \frac{8}{19} \end{aligned}
- \begin{aligned} \frac{9}{19} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
= \frac{1}{2+\frac{1}{2+\frac{1}{\frac{3}{2}}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{1}{2+\frac{2}{3}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{1}{\frac{8}{3}}}
\end{aligned}
\begin{aligned}
= \frac{1}{2+\frac{3}{8}}
\end{aligned}
\begin{aligned}
= \frac{1}{\frac{19}{8}}
\end{aligned}
\begin{aligned}
= \frac{8}{19}
\end{aligned}
4. \begin{aligned}
(3\frac{1}{4}\div \{1\frac{1}{4} - \frac{1}{2}(2\frac{1}{2} - \overline {\frac{1}{4} - \frac{1}{6}} ) \} )
\end{aligned}
- 78
- 88
- 98
- 108
Answer: Option A
Explanation:
Tip:
As you can see, there is bar over
\begin{aligned}
\overline{\frac{1}{4}-\frac{1}{6}}
\end{aligned}
So their sign will be changed from - to + as
\begin{aligned}
\frac{1}{4}+\frac{1}{6}
\end{aligned}
5. Simplfy
b - [b -(a+b) - {b - (b - a+b)} + 2a]
- a
- 2a
- 4a
- 0
Answer: Option D
Explanation:
b-[b-(a+b)-{b-(b-a+b)}+2a]
=b-[b-a-b-{b-(2b-a)}+2a]
=b-[-a-{b-2b+a}+2a]
=b-[-a-{-b+a}+2a]
=b-[-a+b-a+2a]
=b-[-2a+b+2a]
=b-b
=0