Question Detail
Evaluate combination
\begin{aligned}
^{100}{C}_{97} = \frac{100!}{(97)!(3)!} \\
\end{aligned}
- 161700
- 151700
- 141700
- 131700
Answer: Option A
Explanation:
\begin{aligned}
^{n}{C}_r = \frac{n!}{(r)!(n-r)!} \\
^{100}{C}_{97} = \frac{100!}{(97)!(3)!} \\
= \frac{100*99*98*97!}{(97)!(3)!} \\
= \frac{100*99*98}{3*2*1} \\
= \frac{100*99*98}{3*2*1} \\
= 161700
\end{aligned}