Question Detail Evaluate \begin{aligned} \sqrt{1471369} \end{aligned} 1213122312331243 Answer: Option A Similar Questions : 1. Evaluate \begin{aligned} \sqrt[3]{\sqrt{.000064}} \end{aligned} 0.00020.0020.020.2 Answer: Option DExplanation:\begin{aligned} = \sqrt{.000064} \end{aligned} \begin{aligned} = \sqrt{\frac{64}{10^6}} \end{aligned} \begin{aligned} = \frac{8}{10^3} = .008 \end{aligned} \begin{aligned} = \sqrt[3]{.008} \end{aligned} \begin{aligned} = \sqrt[3]{\frac{8}{1000}} \end{aligned} \begin{aligned} = \frac{2}{10} = 0.2 \end{aligned} 2. \begin{aligned} \sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}} \end{aligned} 426166 Answer: Option DExplanation: \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{16}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + 4}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - 5} \end{aligned} \begin{aligned} = \sqrt{36} = 6 \end{aligned} 3. Evaluate \begin{aligned} \sqrt{248+\sqrt{64}} \end{aligned} 14261636 Answer: Option CExplanation:\begin{aligned} = \sqrt{248+\sqrt{64}} \end{aligned} \begin{aligned} = \sqrt{248+8} \end{aligned} \begin{aligned} = \sqrt{256} \end{aligned} \begin{aligned} = 16 \end{aligned} 4. The least perfect square, which is divisible by each of 21, 36 and 66 is 213414213424213434213444 Answer: Option DExplanation:L.C.M. of 21, 36, 66 = 2772 Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11 To make it a perfect square, it must be multiplied by 7 x 11. So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444 5. The cube root of .000216 is 0.60.0060.06.0006 Answer: Option C Read more from - Square Root and Cube Root Questions Answers