Question Detail
\begin{aligned}
\left(25 \right)^{7.5} \times \left(5 \right)^{2.5} \div \left(125 \right)^{1.5} = 5^?
\end{aligned}
- 9.7
- 11.5
- 12
- 13
Answer: Option D
Explanation:
Lets assume,
\begin{aligned}
\left(25 \right)^{7.5} \times \left(5 \right)^{2.5} \div \left(125 \right)^{1.5} = 5^x \\
\text{then, } \frac{ \left( 5^2 \right)^{7.5} \times \left(5 \right)^{2.5} }{\left(5^3 \right)^{1.5} } = 5^x \\
=> \text{then, } \frac{ \left( 5^{15} \right) \times \left(5^{2.5} \right) }{\left(5^{4.5} \right) } = 5^x \\
=> 5^x = 5^{15 + 2.5 - 4.5} \\
=> 5^x = 5^{13} \\
\text{Hence, } x = 13
\end{aligned}