Question Detail \begin{aligned} \text{If } 5^{(a + b)} = 5 \times 25 \times 125 ,\\ \text{what is }(a + b)^2 \end{aligned} 25283644 Answer: Option C Similar Questions : 1. \begin{aligned} \text{If } 3^{x-y} = 27 \text{ and } 3^{x+y} = 243, \\ \text{ then find the value of x } \end{aligned} 1234 Answer: Option DExplanation:\begin{aligned}3^{x-y} = 27 = 3^3 <=> x-y = 3 \text{... (i)}\\ 3^{x+y} = 243 = 3^5 <=> x+y = 5 \text{... (ii)} \\ \text{ adding (i) and (ii)} => 2x = 8 \\ => x = 4 \end{aligned} 2. \begin{aligned} \text{If }2x = \sqrt[3]{32}, \text{ then x is equal to} \end{aligned} \begin{aligned} \frac{5}{2} \end{aligned}\begin{aligned} \frac{2}{5} \end{aligned}\begin{aligned} \frac{3}{5} \end{aligned}\begin{aligned} \frac{5}{3} \end{aligned} Answer: Option DExplanation:\begin{aligned} = (32)^{\frac{1}{3}}\\ = (2^5)^{\frac{1}{3}}\\ = 2^{\frac{5}{3}}\\ => x= \frac{5}{3} \end{aligned} 3. \begin{aligned} \text{If } 5^{(a + b)} = 5 \times 25 \times 125 ,\\ \text{what is }(a + b)^2 \end{aligned} 25283644 Answer: Option C 4. Find the value of \begin{aligned} (10)^{150} \div (10)^{146} \end{aligned} 10100100010000 Answer: Option DExplanation:\begin{aligned} = \frac{(10)^{150}}{(10)^{146}} = 10^4 = 10000 \end{aligned} 5. Find the value of, \begin{aligned} \frac{1}{216^{-\frac{2}{3}}}+\frac{1}{256^{-\frac{3}{4}}}+\frac{1}{32^{-\frac{1}{5}}} \end{aligned} 100101102103 Answer: Option C Read more from - Surds and Indices Questions Answers