Question Detail

\begin{aligned}
\text{If } 3^{x-y} = 27 \text{ and } 3^{x+y} = 243, \\
\text{ then find the value of x }
\end{aligned}

  • 1
  • 2
  • 3
  • 4
Similar Questions :

1. \begin{align}
\left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{b}{a}\right)^{x-7}.\\\text{ What is the value of x ?}
\end{align}

  • 1.5
  • 4.5
  • 7.5
  • 9.5

2. Value of \begin{aligned} (256)^{\frac{5}{4}} \end{aligned}

  • 1012
  • 1024
  • 1048
  • 525

3. \begin{aligned}
\text{If }2x = \sqrt[3]{32}, \text{ then x is equal to}
\end{aligned}

  • \begin{aligned} \frac{5}{2} \end{aligned}
  • \begin{aligned} \frac{2}{5} \end{aligned}
  • \begin{aligned} \frac{3}{5} \end{aligned}
  • \begin{aligned} \frac{5}{3} \end{aligned}

4. If m and n are whole numbers such that
\begin{aligned} m^n=121 \end{aligned}
, the value of \begin{aligned} (m-1)^{n + 1} \end{aligned} is

  • 1
  • 10
  • 100
  • 1000

5. Find the value of
\begin{aligned} (10)^{150} \div (10)^{146} \end{aligned}

  • 10
  • 100
  • 1000
  • 10000
Read more from - Surds and Indices Questions Answers