Question Detail
\begin{aligned} \sqrt{\frac{32.4}{x}} = 2 \end{aligned}
- 8
- 8.1
- 9
- 9.1
Answer: Option B
1. What is the smallest number by which 3600 be divided to make it a perfect cube.
- 450
- 445
- 440
- 430
Answer: Option A
Explanation:
\begin{aligned}
3600 = 2^3 \times 5^2 \times 3^2 \times 2
\end{aligned}
To make it a perfect cube it must be divided by
\begin{aligned}
5^2 \times 3^2 \times 2 = 450
\end{aligned}
2. Evaluate
\begin{aligned}
\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
- 16
- 8
- 6
- 4
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+13}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{121}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+11}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{36}}
\end{aligned}
\begin{aligned}
=\sqrt{10+6}
\end{aligned}
\begin{aligned}
=\sqrt{16} = 4
\end{aligned}
3. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}
- 0.00243
- 0.0243
- 0.243
- 2.43
Answer: Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.
4. Evaluate \begin{aligned}
\sqrt{1471369}
\end{aligned}
- 1213
- 1223
- 1233
- 1243
Answer: Option A
5. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}