Question Detail
\begin{aligned} \sqrt{0.00059049} \end{aligned}
- 24.3
- 2.43
- 0.243
- 0.0243
Answer: Option D
1. Students of a class collected as many paise from each student of class as is the number of students in that class. If total collection is Rs. 59.29, then find the total number of students in the class.
- 55
- 65
- 77
- 80
Answer: Option C
Explanation:
So from the question it is clear that total sum collected was 59.29 rupees.
So total paise are 5929.
\begin{aligned}
\text{Total Members = } \sqrt{5929} \\
= 77
\end{aligned}
2. Evaluate
\begin{aligned}
\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
- 16
- 8
- 6
- 4
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+13}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{121}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+11}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{36}}
\end{aligned}
\begin{aligned}
=\sqrt{10+6}
\end{aligned}
\begin{aligned}
=\sqrt{16} = 4
\end{aligned}
3. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}
- 0.00243
- 0.0243
- 0.243
- 2.43
Answer: Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.
4. What is the smallest number by which 3600 be divided to make it a perfect cube.
- 450
- 445
- 440
- 430
Answer: Option A
Explanation:
\begin{aligned}
3600 = 2^3 \times 5^2 \times 3^2 \times 2
\end{aligned}
To make it a perfect cube it must be divided by
\begin{aligned}
5^2 \times 3^2 \times 2 = 450
\end{aligned}
5. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}
- 4
- 26
- 16
- 6
Answer: Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}