Question Detail \begin{aligned} \sqrt{0.00059049} \end{aligned} 24.32.430.2430.0243 Answer: Option D Similar Questions : 1. \begin{aligned} \sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}} \end{aligned} 426166 Answer: Option DExplanation: \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + \sqrt{16}}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{21 + 4}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - \sqrt{25}} \end{aligned} \begin{aligned} = \sqrt{41 - 5} \end{aligned} \begin{aligned} = \sqrt{36} = 6 \end{aligned} 2. Find the value of X \begin{aligned} \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned} 0.0190.190.90.109 Answer: Option BExplanation:\begin{aligned} => \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned} \begin{aligned} => 9 + 0.9 = 10.09 - X \end{aligned} \begin{aligned} => X = 10.09 - 9.9 = 0.19 \end{aligned} 3. Evaluate \begin{aligned} \sqrt{53824} \end{aligned} 132232242253 Answer: Option B 4. Evaluate \begin{aligned} \sqrt{1471369} \end{aligned} 1213122312331243 Answer: Option A 5. The least perfect square, which is divisible by each of 21, 36 and 66 is 213414213424213434213444 Answer: Option DExplanation:L.C.M. of 21, 36, 66 = 2772 Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11 To make it a perfect square, it must be multiplied by 7 x 11. So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444 Read more from - Square Root and Cube Root Questions Answers