Question Detail
\begin{aligned} \sqrt{0.00059049} \end{aligned}
- 24.3
- 2.43
- 0.243
- 0.0243
Answer: Option D
1. Find the value of X
\begin{aligned} \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned}
- 0.019
- 0.19
- 0.9
- 0.109
Answer: Option B
Explanation:
\begin{aligned}
=> \sqrt{81} + \sqrt{0.81} = 10.09 - X
\end{aligned}
\begin{aligned}
=> 9 + 0.9 = 10.09 - X
\end{aligned}
\begin{aligned}
=> X = 10.09 - 9.9 = 0.19
\end{aligned}
2. if a = 0.1039, then the value of
\begin{aligned} \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}
- 12.039
- 1.2039
- 11.039
- 1.1039
Answer: Option D
Explanation:
Tip: Please check the question carefully before answering. As 3a is not under the root we can convert it into a formula , lets evaluate now :
\begin{aligned}
= \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1)^2 + (2a)^2 - 2x1x2a} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1-2a)^2} + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= 1 + a = 1 + 0.1039 = 1.1039 \end{aligned}
3. Evaluate
\begin{aligned}
\sqrt{6084}
\end{aligned}
- 75
- 77
- 78
- 68
Answer: Option C
4. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}
- 0.00243
- 0.0243
- 0.243
- 2.43
Answer: Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.
5. The least perfect square, which is divisible by each of 21, 36 and 66 is
- 213414
- 213424
- 213434
- 213444
Answer: Option D
Explanation:
L.C.M. of 21, 36, 66 = 2772
Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11
To make it a perfect square, it must be multiplied by 7 x 11.
So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444