Question Detail
5004 / 139 - 6
- 25
- 27
- 29
- 30
Answer: Option D
1. In a group of ducks and buffaloes, the total number of legs are 24 more than twice the number of heads. Find the total number of buffaloes.
- 8
- 10
- 12
- 14
Answer: Option C
Explanation:
Let the number of buffaloes be x and the number of ducks be y
=> 4x + 2y = 2 (x + y) + 24
=> 2x = 24 => x = 12
2. Simplify
\begin{aligned}
\frac{\frac{7}{2}\div {\frac{5}{2}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{5}{2}} of \frac{3}{2} } \div 5.25
\end{aligned}
- \begin{aligned} \frac{3}{5} \end{aligned}
- \begin{aligned} \frac{3}{6} \end{aligned}
- \begin{aligned} \frac{3}{7} \end{aligned}
- \begin{aligned} \frac{3}{8} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
\frac{\frac{7}{2}\div {\frac{5}{2}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{5}{2}} of \frac{3}{2} }\div 5.25
\end{aligned}
\begin{aligned}
= \frac{\frac{7}{2}\times {\frac{2}{5}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{15}{4}}}\div 5.25
\end{aligned}
\begin{aligned}
= \frac{\frac{21}{10}}
{\frac{7}{2} \times { \frac{4}{15}}}\div {\frac{525}{100}}
\end{aligned}
\begin{aligned}
= \frac{21}{10}\times{\frac{15}{14}}\times\frac{100}{525}
= \frac{6}{14}
= \frac{3}{7}
\end{aligned}
3. Simplfy
b - [b -(a+b) - {b - (b - a+b)} + 2a]
- a
- 2a
- 4a
- 0
Answer: Option D
Explanation:
b-[b-(a+b)-{b-(b-a+b)}+2a]
=b-[b-a-b-{b-(2b-a)}+2a]
=b-[-a-{b-2b+a}+2a]
=b-[-a-{-b+a}+2a]
=b-[-a+b-a+2a]
=b-[-2a+b+2a]
=b-b
=0
4. Simplify
(31/10) * (3/10) + (7/5) / 20
- 0
- 1
- 10
- 100
Answer: Option B
Explanation:
= (31/10) * (3/10) + (7/5) / 20
= (3.1) * (.3) + (1.4) / 20
= 0.93 + 0.07
= 1
5. a * b = 2a - 3b + ab, then 3*5 + 5*3 = ?
- 20
- 21
- 22
- 23
Answer: Option C
Explanation:
= 2(3)-3(5)+(3*5) + 2(5)-3(3)+(5*3)
= 6-15+15+10-9+15 = 31-9 = 22