Question Detail
(3080 + 6160) / 28
- 380
- 350
- 330
- 310
Answer: Option C
Explanation:
As per BODMAS rule, first we will solve the equation in bracket then we will go for division
= (9240)/28 = 330
1. \begin{aligned}
\frac{4+4 \times 18 -6 - 8}{123 \times 6 - 146 \times 5 }
\end{aligned}
- 7.50
- 7.75
- 8
- 8.05
Answer: Option B
Explanation:
\begin{aligned}
\frac{4+72-6-8}{738-730}
\end{aligned}
\begin{aligned}
= \frac{76-14}{8}
\end{aligned}
\begin{aligned}
= \frac{62}{8} = 7.75
\end{aligned}
2. \begin{aligned} 3034 -(1002 \div 20.04) = ? \end{aligned}
- 1964
- 1984
- 2964
- 2984
Answer: Option D
Explanation:
\begin{aligned}
= 3034 -( \frac{1002}{2004} \times 100)
\end{aligned}
\begin{aligned}
= 3034 - 50 = 2984
\end{aligned}
3. In a class free notebooks were distributed among all the children. Each child got notebooks which were one-eighth of the number of children. If number of children been half, then each child would have recieved 16 notebooks in total. Find the total number of books distributed.
- 450
- 512
- 598
- 658
Answer: Option B
Explanation:
Let suppose total number of students in class are X.
Then from the question we can conclude it that,
\begin{aligned}
X*\frac{1}{8}X = \frac{X}{2}*16 \\
=> X = 64\\
\text{Total notebooks,} \\
= \frac{1}{8}X^2 \\
= \left( \frac{1}{8} * 64 * 64 \right) \\
= 512
\end{aligned}
4. Simplify
\begin{aligned}
16-[5-(6+2(7-\overline{8-5}))]
\end{aligned}
- 23
- 25
- 28
- 30
Answer: Option B
Explanation:
\begin{aligned}
= 16-[5-(6+2(7-8+5))]
\end{aligned}
(Please check due to overline, sign has been changed)
\begin{aligned}
= 16-[5-(6+2 \times 4))]
\end{aligned}
\begin{aligned}
= 16-[-9] = 16 + 9 = 25
\end{aligned}
5. Simplify
\begin{aligned}
\frac{\frac{7}{2}\div {\frac{5}{2}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{5}{2}} of \frac{3}{2} } \div 5.25
\end{aligned}
- \begin{aligned} \frac{3}{5} \end{aligned}
- \begin{aligned} \frac{3}{6} \end{aligned}
- \begin{aligned} \frac{3}{7} \end{aligned}
- \begin{aligned} \frac{3}{8} \end{aligned}
Answer: Option C
Explanation:
\begin{aligned}
\frac{\frac{7}{2}\div {\frac{5}{2}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{5}{2}} of \frac{3}{2} }\div 5.25
\end{aligned}
\begin{aligned}
= \frac{\frac{7}{2}\times {\frac{2}{5}} \times {\frac{3}{2}} }{\frac{7}{2} \div { \frac{15}{4}}}\div 5.25
\end{aligned}
\begin{aligned}
= \frac{\frac{21}{10}}
{\frac{7}{2} \times { \frac{4}{15}}}\div {\frac{525}{100}}
\end{aligned}
\begin{aligned}
= \frac{21}{10}\times{\frac{15}{14}}\times\frac{100}{525}
= \frac{6}{14}
= \frac{3}{7}
\end{aligned}