Question Detail
0.5 * 0.002 = ?
- 0.0001
- 0.01
- 0.1
- 0.001
Answer: Option D
1. Evaluate
6202.5 + 620.25 + 62.025 + 6.2025 + .62025
- 6791.59775
- 6891.59775
- 6891.59675
- 5891.59775
Answer: Option B
Explanation:
Just we need to take care to put decimal under decimal, rest add in a simple way
2. Evaluate
\begin{aligned}
3.\overline{14}
\end{aligned}
- \begin{aligned} 3\frac{14}{99} \end{aligned}
- \begin{aligned} \frac{14}{99} \end{aligned}
- \begin{aligned} 3\frac{14}{90} \end{aligned}
- \begin{aligned} 3\frac{1400}{99} \end{aligned}
Answer: Option A
Explanation:
when there is bar above a number, we can simplify it by dividing with 9's (equal to the number below bar, in this question 2 digits are below bar)
3. Correct expression of \begin{aligned}
6.\overline{46}
\end{aligned} is
- \begin{aligned} \frac{640}{99} \end{aligned}
- \begin{aligned} \frac{640}{90} \end{aligned}
- \begin{aligned} \frac{64000}{99} \end{aligned}
- \begin{aligned} \frac{640}{9} \end{aligned}
Answer: Option A
Explanation:
\begin{aligned}
6.\overline{46} = 6 + 0.\overline{46}
= 6 + \frac{46}{99}
= 6\frac{46}{99} = \frac{640}{99}
\end{aligned}
4. 617 + 6.017 + 0.617 + 6.0017 = ?
- 62.96357
- 62963.57
- 62.96357
- 629.6357
Answer: Option D
5. \begin{aligned}
\frac{5 \times 1.6 - 2 \times 1.4}{1.3} = ?
\end{aligned}
- 1
- 2
- 3
- 4
- 5
Answer: Option D
Explanation:
As per given equation we can solve like this :
\begin{aligned}
= \frac{8 - 2.8}{1.3} \\
= \frac{5.2}{1.3} = \frac{52}{13} \\
= 4
\end{aligned}